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Theory of transonic shear flow past a thin aerofoil 
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A generalized linear theory is developed for a compressible shear flow by extend- 
ing the Fourier integral representations for the pressure field disturbed by 
pressure dipoles, and it is applied to a transonic shear flow past a thin aerofoil. 

A method of determining the pressure distribution on the aerofoil surface is 
shown. Some numerical examples are presented and discussed. 

It is found that the three-dimensional effect due to non-uniformity of the 
Mach number appears in the greatest degree at lower supersonic span-stations. 
Even within the scope of the linearized theory not such a great lift force arises 
near the sonic station as would be expected from the linearized uniform flow 
theory. 

1. Introduction 
As is well known, the two-dimensional cascade generally shows a great increase 

of pressure loss at  transonic Mach numbers due to the occurrence of shock waves. 
This information had been enough for us to regard the transonic axial compressor 
as unpromising and to direct our attention towards the supersonic axial com- 
pressor in order to meet the requirement of high thrustlweight ratio for jet 
engines. However, experimental studies on actual axial compressors (Lieblein, 
Lewis & Sandercock 1952) revealed that they operate in contrast to expectation 
with relatively high efficiency throughout the transonic rdgimes. Consequently 
the transonic compressor has become of considerable interest to engine designers. 

Such a difference in performance between the two-dimensional cascade and 
the actual compressor blade row seems to originate in the difference of the 
compressibility effect. When we think of the compressibility effect, it should be 
much emphasized that in the compressor blade row the resultant Mach number 
varies along the blade span. This seems an important factor that makes the 
transonic axial compressor operate relatively efficiently. The author and his 
colleague’s (1965) experimental study on a linear cascade in transonic shear 
flows gives some evidence to support this view. 

We have as yet little analytical information concerned with the compres- 
sibility effect in a transonic compressor except that by McCune (1958). His work, 
however, is confined to the non-lifting problem, i.e. the thickness problem, which 
seems of less interest to engine designers than the lifting problem. The latter 
problem is in general much more difficult to deal with than the former because 
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we must evaluate the non-uniform downwash induced by the trailing vorticity. 
It should also be noted that the interference between blades as well as the 
transonic resonance make McCune’s results too complicated to deduce the 
essential feature in the compressibility effect originating from the non-uniform 
Mach number itself. 

In order to elucidate this essential feature, this paper treats a more simplified 
flow model like that adopted in the earlier papers (Namba & Asanuma 1967 and 
Namba 1969, to be referred to hereafter as L and S respectively), that is to say, 
a parallel shear flow passing through obstacles spanning two parallel walls. In 
this paper tho problem is simplified further by dealing with a single thin aero- 
foil instead of a cascade. 

In  general the linearized theory cannot be applied to a steady uniform 
transonic flow. As pointed out by McCune (1958), this is due to the fact that the 
linearized theory assumes a disturbance to propagate relative to the uiidis- 
turbed fluid at  a sound speed appropriate to the undisturbed flow condition. This 
assumption makes disturbances accumulate in the case that the Mach number 
of the undisturbed flow is everywhere one and then the linear theory becomes 
physically meaningless. Therefore in this case we must take into account a 
non-linear term which ensures that disturbances propagate at  the local speed 
of sound relative to the local fluid velocities. 

In  the case of a shear flow, however, the linearized theory is applicable even 
to a transonic rhgime, because the accumulation of disturbances is relieved 
owing to the non-uniform Mach number of the undisturbed condition. In  this 
paper a linearized three-dimensional theory is developed by assuming small 
disturbances. In  view of the author’s (1965) experimental results the assumption 
of small disturbances is expected to be of practical validity for transonic shear 
flows as far as thin obstacles are concerned. 

The fundamental differential equation for a transonic shear flow belongs to 
the mixed type which is elliptic in the subsonic region and hyperbolic in the 
supersonic region. Although the flow characters in both regions are essentially 
different from each other, no discontinuity in pressure and velocities should arise 
across the sonic plane. Therefore it is desirable to express them in common forms 
throughout both regions. For this purpose we shall, in this paper, generalize the 
Fourier integral representation of disturbance pressure due to pressure dipoles 
which has been derived for subsonic shear flow in L and S. Then, it is shown how 
to determine the surface pressure on a given aerofoil in a transonic shear flow. 
Finally, a few numerical examples are given and discussed. 

2. Assumptions and basic equations 
As shown in figure 1 we shall treat a thin aerofoil spanning two parallel 

walls denoted by y = 0 and y = A. The aerofoil with the chord length of 1 is 
placed along the y-axis and attacked by a spanwisely non-uniform shear flow. 
For this flow model the following assumptions are made: (i)  the fluid is an inviscid, 
non-conducting perfect gas; (ii) the aerofoil has small thickness and camber, and 
is located with a small angle of attack; (iii) the flow is a small-disturbance flow, 
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and the entropy remains constant along each streamline; (iv) the Mach number 
gradient near the sonic station is not small. 

The Mach number distribution along the y-axis is determined by 

\\\ \ \\\\ \ \ \\ \ \'. 

\ \\\\\',\\\ 

where O(y), pPw(y) and p-w are the velocity, the fluid density and the static 
pressure of the undisturbed stream respectively and K denotes the ratio of the 
specific heats of the fluid. 
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FIGURE 1. Geometry and notation of the flow model. 

Since we deal with the transonic shear flow with a sonic flow velocity at  a 
certain span-station, shock waves are expected to exist. However, we shall 
assume that the flow is disturbed so weakly that the entropy change across the 
shock waves can be neglected as a higher-order small perturbation. Then we 
find, as in L and S, a linearized equation for the disturbance pressure p as follows : 

Here a brief mention should be made of the validityof the linearization expressed 
by (2) in the transonic r6gime. It is certain that the first term on the left-hand 
side of (2) becomes small at  a near-sonic flow station compared with neglected 



762 Masanobu Narnba 

non-linear terms. However, according to Lighthill’s (1950) investigation on two- 
dimensional shear flow, the disturbance in the sonic plane is found to be 

Although this is a result for a two-dimensional flow field, it may be possible to 
say that, unless dM-,/dy is small near sonic stations, the non-linear terms with 
respect to 2p/2x still remain small in comparison with the retained linear terms 
other than t,he first one in (2). 

The boundary condition to be fulfilled a t  the side walls is 

appy = o for y = O , A .  (3) 

[w/U],=,, = f ( ~ )  for - $  < x < 4, (4) 

The linearized boundary condition on the aerofoil surface can be written as 

where w is the z-component of the disturbance velocity and f (x) describes the 
slope of the aerofoil surface which is assumed for simplicity to be uniform along 
the span. Here we shall deal with the lifting problem only, and hencef(x) denotes 
the slope of the aerofoil mean camber surface including the angle of attack. On 
the thickness problem some comments are given in appendix C. 

In  the case of a transonic shear flow non-zero disturbance is expected to exist 
upstream of the aerofoil even in the supersonic region where M-,(y) > 1, 
because disturbance can propagate upstream by way of the subsonic region 
where M-, (y) < 1. On the other hand the disturbance propagating downstream 
in the supersonic region can remain finite a t  infinity. Therefore the boundary 
condition at infinity is written as 

p+O as x - t - m  ( 5 )  

and IpI < m  for x++m.  (6) 
It should be noted, however, that the expressions ( 5 )  and (6) hold also for a 

pure supersonic or a pure subsonic shear flow, since the solution for a pure super- 
sonic shear flow satisfying the condition ( 5 )  automatically gives zero disturbance 
upstream of the aerofoil, while in the case of a pure subsonic shear flow the dis- 
turbance obtained from the solution satisfying the condition (6) necessarily 
vanishes far downstream. 

3. General solution and its property 
As shown in L and S, the solution of (2) satisfying (3) is in general expressed as 

where /3,(a) and Y,(y; a)  (n = 0,1 ,2 ,  ...) are respectively the eigenvalues and 
the eigenfunctions for the following Sturm-Liouville boundary-value problem : 

l -M:,  
- -- 
dy a (  M2, dy)+(-r dy 

dY/dy = 0 a t  y = 0,h. (9) 
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Here A ,  (a) is an arbitrary function of a which is to be determined by the other 
boundary conditions. The eigenfunctions Y,(y; a) constitute a complete set of 
orthonormal functions such that 

where Sn,m is the Kronecker delta. 
Now, let Y, (y; a) be expressed in terms of a series such that 

m 

Yn(Y;a) = C Bn,m(a)Y,(y;O)* 
m=O 

Then, as shown in S, pi(a)/a2 (n  = 0 ,1 ,2 ,  ...) are obtained as the eigenvalues of 
a certain infinite matrix, and Bn,m(a) (m = 0 ,1 ,2 ,  ...) are corresponding eigen- 
vectors. It is shown from the property of the matrix that 

as a+O, (13) 

l-BW_2,+O(a2):, = 0, 

O(a-2):n = 1,2,  ..., 
Bn,m(a) +'n,m, 

where qn and B,,,(co) are finite values and&?, denotes the harmonic mean 
Mach number defined by 

MF, - = ('s"'.) -t . 
O M - m  

As shown in L, in the case of a pure subsonic shear flowp;(a) is always positive 
for 0 < a < 00, and hence 0 < q:. In the case of a transonic shear flow, however, 
not all oft!?: remain positive as a + co. In  fact, let the terms of order higher than 
m = N in the series (1 1) be omitted, then /3:(a)/a2 (n = 0,1 ,2 ,  . . . , N - 1)  can be 
obtained as the eigenvalues of a finite matrix of order N .  Then it turns out that 
there exist an integral number N' and real numbers a, such that 

> 0 for an > a > 0, 1 (15) 
/3:(a)/a2 = 0 for a = a,, i < 0 for a > an, 

co> a, > 0 for N ' > n >  0, and a,=m for N-1 > n a  N'. 

The number of the eigenvalues which become negative as a + co, i.e. N',  increases 
with increase of the region of supersonic flow. According as the flow is entirely 
subsonic, transonic or entirely supersonic, there holds N' = 0, N > N' >, 1 or 
N' = N .  To demonstrate such a nature of /3,(a), three examples of the depend- 
ence of (.)/a2 upon a are shown for shear flows with the Mach number profile 
of M-, (y) = 1 M o e a U / A  in figures 2 ,3  and 4, where N is chosen as 10 and MI denotes 
M-,(h) = Hoea. 

The negative value of p: (a) implies that ,8, (a) is purely imaginary. It is evident 
that the disturbance expressed in terms of purely imaginary values of /?,(a) in 
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FIGURE 2. Dependence of the eigenvalues Pn upon the parameter a for a subsonic shear 

flow of a = 1.0, M ,  = 0.3 and MI = 0.515. -- -, value for ha = co. (h' = 10.) 

FIGURE 3. Dependence of the eigenvaluos Pn upon the parameter a for a transonic shcar 
flow of a = 1.0, M ,  = 0.550 and M I  = 1.495. ---, value for ha = co. ( N  = 10.) 
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(7) is of supersonic character. The dependence of the character of disturbance 
upon whether Pn(a) is real or imaginary can be confirmed, if the expression (7) 
is applied to a uniform flow as a well-known extreme case. When the flow field 
is uniform in the spanwise direction, that is, when M-, (y) = M, = constant and 

FIGURE 4. Dependence of the eigenvalues Pn upon the parameter a for a supersonic shear 
flow of a = 1.0, M ,  = 1.0 and M ,  = 2.718. ---, value for ha = 03. (N  = 10.) 

@lay = 0,  the eigenvalue /lo (a) reduces to a,/( 1 - M i )  and the solution corre- 
sponding to (7)  becomes 
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4. Disturbance pressure due to a lifting-surface 
The pressure jump Aps(a, y) across the aerofoil can be represented in terms of a 

series such that 
APS (2, Y 1 = [PI,=-, - [PI,=+o 

W 

= 2n 2 Fn(x;a)Yn(y;a). 
11 = 0 

From the orthogonality of Yn(y; a) shown by (lo),  it follows that 

F n ( x ; a )  =-- ' ' A ~ ynjy' a) Aps (x, y) dy. 
2nh s o J L J ( Y )  

Now, the solution for a subsonic shear flow given in L and S suggests that the 
expression of disturbance pressure appropriate to the present problem may be 
given by 

where 92 [ ] denotes the real part, and the argument is assigned for p, (a)  as 
follows: 

(19) 

Such an appointment of the sign corresponds to the boundary condition at  
infinity which requires that the subsonic disturbance vanishes at  infinity and 
that the supersonic disturbance propagates only in the downstream direction. 

The proof that the representation (18) satisfies the boundary conditions (3), 
(5) and (6) is shown in appendix A. 

It would be instructive to show that the expression (18) is a generalization 
which holds also for a subsonic shear flow or a two-dimensional flow. For a sub- 
sonic shear flow, since Pn (a)  is always real, 

1 P, (a) = IPn (a) )  
P,(a) = i lPn(a)l for a ' a,,. 

for an > a > 0, 

B"eXP (ia(2-E) -P7*(a)lzl)l = coS{a(x-E))exP (-P,(.)lzl). 
Then it may not be difficult to show that (18) reduces to the expression givon in S. 
In  the case of a supersonic uniform flow, where Nu, (y) = M, = constant,, 

Fo(x;a) = Aps(z)/2n, 
F'(x;a) = 0 for n = 1,2,  ..., 
Po(a) = i a J ( M f -  1) .  

Then (18) degenerates to the following well-known relation: 
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5. Upwash distribution 
Our purpose is to determine the pressure distribution on the lifting-surface, 

i.e. Aps (x, y), or in other words the coefficients FA(x; a) ,  for the given geometrical 
condition (4). Therefore it is necessary to derive the expression of the upwash 
on the lifting-surface, [w/ U],=,. This is obtainable by integrating the z-component 
of the eqmtion of motion as 

where the condition that the disturbance velocity vanishes at  x = - CQ is used. 
Considering the relation 

m 

which follows from (1 1) and (17), and omitting the terms of order greater than N 
in the infinite series, we get the upwash distribution in the following refined 
form : 

where 

and 

A detailec 

(23) 

(24) 

description of deriving (22) will be found in appendix B. T.ate that 
D,, (x - t )  includes two singularities. One is of supersonic character denoted by 
6(x - g), and the other is of subsonic character manifested by l/(x - c).  According 
as the basic flow is entirely subsonic (N' = 0) or entirely supersonic (N' = N), 
the term 6(x-c) or l/(x-<) vanishes. For a transonic shear flow (0 < N' < N ) ,  
both singularities are retained. 
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6. Integral equations and method of solution 
Combination of (22) with (4) gives 

for - $  < x < 8. Multiplying (25) by Yg)(y) and integrating with respect to y 
from 0 to A ,  we get the following simultaneous integral equations : 

where 

Introducing the angle variables 8 and q5 defined as 

x = &cos8, = $cosq5 (0 < 8, q5 < 7r), 

c -R(O)*(+)  [gpp,,,  + D:,m(R $)I $5 sin q5 aq5 = E Y * ( @  

we can rewrite (26) as 
47r n N - 1  -=Io ??,=o 

(0 < 8 < 77, WL = 0 , 1 , 2 ,  ..., N - I ) ,  

where FC’*(O) Ez F(no)($cos8), f*(O)  =f($cosO), 
D;,JO,$) = D~,,(~c0S8-~c0Sq5). 

In  the case of a pure subsonic shear flow as shown in S, it is quite useful to 
represent Fg)*(q5) in terms of a trigonometric series including tan&+ which 
suitably expresses the square root singularity at the leading edge as well as the 
zero pressure jump (i.e. the Kutta’s condition) at  the trailing edge. However, 
in the case of a transonic or a supersonic shear flow, such a representation seems 
inappropriate, because in a supersonic region the pressure jump across the 
aerofoil surface at  both of the leading and trailing edges can remain finite. There- 
fore it should be unreasonable to presume the pressure jump to be zero at  the 
trailing edge and infinite at  the leading edge in a transonic shear flow. 

If we assume Aps at the trailing edge to be finite, instead of assuming it to be 
zero, then what will follow from i t?  Owing to the subsonic singularity l/(x-<) 
included in the kernel function Dn,m(x- 0, Fg) (x )  should generally involve a 
term A/($-x)h ,  where A is an arbitrary constant. It will be noted, therefore, 
that the condition mentioned above requires A to be zero, since otherwise Aps 
becomes infinite in order of (+-x)-$ as x+i.  Therefore we can express the 
condition that Ap, is bounded a t  x = 4 in the form 

Aps(i--x)* = 0 at  x = &. (30) 

It must be noted further that, in the case of a pure subsonic flow, the condition 
(30) automatically yields Ap, = at = 

as long asf(x) is bounded at  x = 4. 
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In  this view, let us introduce new unknown variables @:(q5) or a,(,$) defined 

47T n N - l  - P I  2: ~*,(~)[~p~)sn,,+o*,,,(e,q5)1dq5 = P~Y*(s) 
KP-cc 0 n=O 

(m = 0, 1,2,  . . ., N -  l), ( 32) 

q ( 0 )  = 0. (33) 

and we can give as the condition at the trailing edge 

It should be noticed that for a flat plate in a uniform subsonic flow Aps ($ - x2)t  
shows a linear variation proportional to Q - x, while in a uniform supersonic flow 
it shows a half-circle distribution proportional to (a - x2)&. 

Since @X($) given by (31) are considered to be bounded for 0 < q5 < n, a 
method of numerical integration with respect to q5 is expected to give a solution 
of (32) with satisfactory accuracy. Therefore, if we take M + 1 representative 
abscissae q5i (i = 0 ,1 ,2 ,  ..., M )  in 0 < q5i < 7~ and choose q5M as q5M = 0, then we 
get from (32) and (33) the following simultaneous linear equations for N x M 
unknowns @E($J: 

-__ c 47~ Jf-1N-1 - c @*,($A [ Q P E ' s n , m + ~ : , , ( %  54) IWi  = YCO) m f  * (6,) 
KP-a3 i = o  n=O 

( m = 0 , 1 , 2  ,.,.) N - l , k = O , l , 2  ,..., M - 1 ) ,  (34) 

where wi denote weights which depend upon the adopted formula of the numerical 
quadrature. 

7. Several aerodynamic characteristics 
Once @,(x) and hence P$"(x) are determined, we can calculate various aero- 

dynamic characteristics from them. In the following are shown the expressions 
for some of those considered to be of importance. 

Local pressure jump coefficient across the aerofoil : 

Cp A P ~  (x, Y)/{+Kp-m*! m (Y)) 

Local lift force per unit span: 

Z(y) Aps(x,y)dz 
-1 

where 

49 

(37) 

Fluid. Mech. 36 
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Local lift coefficient: C,(y) = Z(y)/{+~p-~M!,(y)}. (38) 

Induced velocities on the wake surface far downstream: 

where v, and w, are the y- and z-components of the induced velocity far down- 
stream respectively. 

Let us introduce an ‘absolute lift coefficient ’ defined by 

then C,*(y) shows a spanwise distribution which is proportional to the local lift 
force 1 (y). 

8. Numerical examples and discussion 
8.1. Flow model and conditions in computation 

As in L and S, the Mach number profile of exponential variation is adopted in 
the present paper too, that is 

M-, (y) = MOexp (ay/h) .  

The expressions for Yg)(y) and p$) for this flow will be found in L and S. In order 
to make clear the effect of compressibility the results for four different Mach 
number levels with the same shear parameter a = 1.0 are shown here. 

The aerofoil configuration chosen is a flat plate with aspect ratio of h = 2.5. 
The trapezoidal rule formula is applied to the numerical integration in (34); 

i.e. the arguments q5$ and the weights wi are 

q5i = & n + ( i / M ) n  for i = 0,1 ,2 ,  ..., M ,  

for i = 1 , 2  ,..., M - 1 ,  
{ i ; g M )  for i = 0 , M .  

w, = 

On the other hand the arguments 6, at which (34) is to be satisfied are set a t  the 
middle station between the adjacent two abscissae q5k and q5k+l, i.e. 

e, = q5k+;rr / ( z~ )  (k = 0,1 ,2 ,  ..., M - 1 ) .  

Both of the numbers N and M are chosen to be 10. 
The numerical integration of the Fourier integrals included in Dn,m (x - [) has 

been performed by the same method as that adopted in the reference S. Since the 
number of unknowns to be determined by solving a set of linear equations is 100 
in this case, the numerical work consumes much more time than in the case of the 
reference S. Furthermore, it has turned out that both of the numbers N and M 
greater than 10 would be desirable in order to evaluate the pressure and velo- 
city distributions with a practically sufficient accuracy, since in the case of a 
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transonic shear flow the spanwise and chordwise variations of the pressure and 
velocities near sonic flow stations are found to be complicated and hence the 
convergence of the series expansions such as (16) may not be rapid. Therefore 
some of the numerical results presented here may give no more than qualitative 
information as to the distribution patterns of pressure or velocities. 

The computation was conducted on the electronic computer HITAC 5020E at 
the Computing Center of the University of Tokyo. The time consumed in com- 
putational work per case was about 700 seconds. 

8.2. The results 
Pressure distribution on a flat plate. The distributions of the pressure jump 

coefficient CJa, are shown in figures 5-8, where the distributions of C, ($ - x2))t/ag 
are also illustrated. Here ag denotes the angle of attack. 

For an entirely subsonic shear flow (figure 5) the chordwise variation of C, is 
essentially similar in character to that in a uniform subsonic flow. As is con- 
firmed already in the previous paper s, no singular phenomenon is seen near the 
sonic span-stations even within the scope of linear theory. 

Figures 6 and 7 show the examples for transonic shear flows. It is interesting 
that the chordwise pressure profile keeps the uniform subsonic type of character 
over the whole subsonic span portion where M-, < 1, while C! at the lower 
supersonic span-station shows a complicated wavy profile. The chordwise 
variation of C, seems most violent a t  the sonic span-station and it gradually 
diminishes as the distance from the sonic span-station increases. It is worth 
noticing that no pressure discontinuity across the lifting-surface is seen at  the 
trailing edge, as long as the span-station belongs to the subsonic region, while 
at the span-station attacked by supersonic Mach number the pressure at  the 
trailing edge shows a finite discontinuity across the aerofoil surface. 

It appears that the pressure becomes infinite at the leading edge even in the 
supersonic region, since in strictness C, ($  - x2)* must be zero a t  x = - 4, in order 
for C, to be finite at  the leading edge. However, that the numerically obtained 
value of C, ($ - x2)4 is not precisely zero at x = - Q in the supersonic region may 
also be considered to originate from the inaccuracy in the numerical computation 
especially due to insufficient convergence of the adopted truncated series expan- 
sion. On the other hand if we judge from extrapolation of the values near x = - Q, 
it  also seems possible to  regard the pressure at  the leading edge as finite, which 
may be more reasonable from a theoretical point of view. 

Figure 8 is the case where the whole span is attacked by a supersonic flow. The 
waviness of the C, profile diminishes as M-, increases and completely vanishes 
at  higher supersonic span-stations, where C, shows a flat distribution similar in 
character to that of a flat plate in a uniform supersonic flow. 

All the results indicate that the surface pressure at the lower supersonic span- 
station shows both the subsonic and supersonic characters in its pattern, the 
latter of which becomes dominant as M-, increases. On the other hand little of 
the supersonic character seems to be contained at  high subsonic span-stations. 
One of the reasons for this phenomenon may be that disturbances transmitted 
across the sonic plane into the subsonic flow region propagate in all directions, 

49-2 
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FIGURE 5. Distribution of the pressure coefficient for a flat plate of h = 2.5 in a subsonic 
shear flow of a = 1.0, M ,  = 0.367 and M ,  = 0.998. 

FIGURE 6. Distribution of the pressure coefficient for a flat plate of h = 2.5 in a transonic 
shear flow of a = 1.0, M ,  = 0.442 and M ,  = 1.202. 
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FIGURE 7. Distribution of the pressure coefficient for a flat plate of h = 2.5 in a transonic 
shear flow of a = 1.0, Ma = 0.550 and M ,  = 1.495. 

1 mo 
5 

1.0 
-0.5 0 0.5 -0.5 0 0.5 

X x 

FIGURE 8. Distribution of the pressure coefficient for a flat plate of h = 2.5 in a supersonic 
shear flow of a = 1.0, M ,  = 1.0 and M ,  = 2.718. 
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being smoothed out through a shorter distance. On the other hand, once the 
disturbance pressure originating from the subsonic flow region crosses the sonic 
plane into the supersonic flow region, then it can propagate only downstream 
in the local Mach conoid and thus decays only gradually. 

Since there remains a little doubt on the degree of accuracy in the numerical 
computation, it would be too hasty to conclude that the obtained complicated 
wavy profile of the C, distribution is highly exact and realistic. However it may 
be reasonable to suppose that some physical explanation is possible for the 
occurrence of the complicated wavy profile of C, appearing most distinctly in the 
lower supersonic span-station. Lighthill (1950, 1953) showed that a finite com- 
pression wave incident on a sonic flow plane is reflected as a pressure ridge, that 
is, as a rapid compression followed by a rapid expansion. If the incident pressure 
wave has a singularity of a finite discontinuity, then the reflected one has a 
logarithmic singularity. Although Lighthill's study is concerned with a two- 
dimensional flow r&gime, it would be possible to consider that reflexion and 
interference of disturbances in the sonic flow plane should induce also in the 
present three-dimensional flow complicated pressure patterns especially near 
sonic span-stations. 
Lift and downwash. Figure 9 shows the spanwise variation of the local lift 

coefficient C,for the four different shear flows denoted by MI = M-, ( A )  = Moea. In 
general C, is lower at  higher Mach numbers. The reason is obvious for the subsonic 
r6gime; it is due to the downwash induced by the trailing vorticity. The upwash 
distributionsin the Trefftz plane are shown in figure 11. On the other hand, since no 
disturbance can propagate upstream in the supersonic region, no downwash seems 
to be induced at  supersonic span. However, this conjecture is not correct in the 
case of a transonic shear flow, since in this case a disturbance can propagate 
upstream by way of the subsonic region. The disturbance upstream of the 
aerofoil part in the subsonic region, passing into the supersonic region across the 
sonic plane, reaches the aerofoil part in the supersonic region by propagating 
downstream in a local Mach conoid. Therefore, as long as the basic flow includes 
the subsonic flow region, the downwash effect, though smaller, is considered to 
exist at the supersonic span-station too. 

In  the case of a pure supersonic shear flow no disturbance can exist upstream 
of the aerofoil. In  this case, however, the absolute lift coefficient C:, or in other 
words the lift force itself, decreases as M-, increases (figure 10). Therefore the 
local lift coefficient C, defined by (38) shows a spanwise variation similar to that 
for subsonic or transonic shear flow. Since the lift force variation along the span 
for the pure supersonic shear flow of M-,,,, = 2.718 is opposite to those for the 
other shear flows, the patterns of the upwash [w,/ U]z=o (figure 11) as well as the 
cross-flow component [urn/ U],=+, (figure 12) show also opposite spanwise varia- 
tions to those for the other cases. 

It is interesting that the trailing vorticity which is proportional to [ V ~ / U ] ~ = + ~  
is found to be stationary near the sonic station. Accordingly the spanwise 
gradient of C, or 6': seems to be small at the sonic span-station as seen from 
figure 9 or 10. 

In  order to see how the disturbance reaches upstream of the aerofoil part in 
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the Supersonic flow region, the z-component of the disturbance velocity at the 
station upstream of the leading edge by 5 % chord length (x = - 0.55, z = 0 )  is 
calculated (figure 13). The large value in the subsonic region is due to the con- 
tribution of the leading edge singularity. It is seen that the upstream disturbance 
in the supersonic part decreases with increase of the supersonic flow region. 
From a theoretical standpoint no disturbance exists upstream of the aerofoil in 
the case of an entirely supersonic shear flow, and it is confirmed numerically 
within the limit of the computational error. 
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FIGURE 10 

FIGURE 9. Spanwise distribution of the local lift coefficient for a flat plate of h = 2.5 in 
shear flows of a = 1.0. The open circle 0 denotes the sonic span-station. 
FIGURE 10. Spanwise distribution of the absolute lift coefficient defined by (41) for a flat 
plate of h = 2.5 in shear flows of a = 1.0. The open circle 0 denotes the sonic span-station. 

Finally, the mean local lift coefficient defined by 

is shown in figure 14. It is found that 6, becomes maximum at the harmonic 
mean Mach number iiFm of about 0.8 at least for this type of shear flow (a  = 1.0). 

9. Conclusion 
An extensive linear theory is developed for a thin aerofoil in a transonic shear 

flow with spanwisely non-uniform Mach number. By solving the basic differential 
equation of mixed type a generalized expression for disturbance pressure due to 
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a sheet of pressure dipoles is derived in a Fourier integral form which holds for 
not only transonic but also pure supersonic or pure subsonic shear flows. 

A set of integral equations is derived to determine the pressure distribution on 
the aerofoil surface. A method of numerical solution is shown, where the dis- 
turbance pressure at the trailing edge is assumed to be finite for all the flow 
r6gimes. 

1 .o 

0.5 

d 

," 0 

. J 
11 

i j  

- . 
d 2 

t 

-0.5 

- 1.0 
0 0.5 1 .o 

Ylh 
FIGURE 11 

0.3 

0.2 

0.1 

d 

L O  
5 

. 0 

. 
8 

P 
Y 

-0.1 

- 0.2 

0 0.5 1.0 

Ylh 
FIGURE 12 

FIGURE 11. Spanwise distribution of the z-component of the induced velocity on the wake 
surface far downstream for a flat plate of h = 2.5 in shear flows of a = 1.0. The open 
circle 0 denotes the sonic span-station. 
FIGURE 12. Spanwise distribution of the y-component of the induced velocity on the wake 
surface far downstream for a flat plate of h = 2-5 in shear flows of a = 1.0. The open circle 
0 denotes the sonic span-station. 

The numerical results indicate that the three-dimensional effect of the non- 
uniform Mach number on the surface pressure distribution is most violent at 
lower supersonic span-stations, where the chordwise pressure profiles show 
complicated forms with mixed supersonic and subsonic characters, and further 
no such great lift force arises as would be expected from the linearized uniform 
flow theory. On the other hand over almost the whole subsonic span-station and 
higher supersonic span-stations the surface pressure distributions are similar 
in character to those in uniform subsonic and supersonic flows respectively. 
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FIGURE 13. Spanwise distribution of the z-component of the induced velocity upstream 
of the leading edge ( z  = 0, x = - 0.55) for a flat plate of h = 2.5 in shear flows of a = 1.0. 
The open circle 0 denotes the sonic span-station. 
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FIGURE 14. Variation of the mean local lift coefficient, defined by (42) with the harmonic 
mean Mach number for a flat plate of h = 2.5 in shear flows of a = 1.0. 
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Appendix A. Proof of (18) 
It is evident that the expression (18) satisfies the boundary condition (3), 

since Yn(y; a )  is the solution of (8) and (9). The discontinuity of pressure across 
the lifting-surface is confirmed by using (16) as follows: 

where 6(x - t)  denotes the delta function of Dirac. 

infinity given by (5) and (6). Let us introduce PY, (x, y; a)  defined by 
Now, it is necessary to confirm that (18) satisfies the boundary condition a t  

FYn (x, Y; a) = F n  (x; a )  Yn (y; a)  - Pn (x; 00) Yn (y ; 00). (A 2 )  

PY,(s,y;a) = O(a-2) as a+m. (A 3) 

From the relations ( l l ) ,  (12) and (17), it  follows that 

Let the infinite series in the integrand of (18) be approximated by the truncated 
series with the first N terms retained. Then p can be expressed in terms of the 
following three portions: 
where 

(A 4) = p(l)  +P(2) +P(3),  

00 N-1 

0 n=O 
p(l)  = - sgn x /"t/ z [exp (ia (2-6) - ~ n  (a)lzl )I Pyn (6 ,  y; a )  da 

- - - sgn 2 s '  d t N i l  W [ 1; exp ( ia (x - 6) -Pn ( 4 1 x 1  PYn (t, y; a)]  d ~ ,  (A51 
-4  n=O 
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Taking into account (12), (13) and (A 3), we find that 

Then from the Riemann-Lebesgue theorem 

p(l) ,  p(2)+ 0 as x -+ i- co. (A 10) 

Finally, we must evaluate the following integral in 

9 [exp (ia (x - g) - /?,(a) ( z ( ) ]  da. (A 11) 

Introduce fin (a) such that 

Then from (12), (13) and (19) it follows that 

p, (a) = fin (a) (a; - as)+. 

(A 13) 
0 < Q,(a) < tx) for 0 < a < 00 

and !&(a) = [qnl +O(a-2) (a+co). 

Here the argument of (a: - a2)* for a, < a is chosen as &r. Then we can evaluate 
P, by dividing it into the following three parts: 

P, = Pg) - sgn z(Pg) + P f ) ) ,  (A 14) 

where &?[exp(iax- IqnzlJ(a,-a2))]da, (A 15) 

Pc) = cosm[exp( - Q,(~~)J(a;~-a~)lzl)-exp( - lq,zlJ(a;-a*))]da, (A 16) IoUn 
m 

Pg) = [cos{ax- Q,(a),/(a2 -a",Iz]}- cos {az- lqnzl 4(a2- da. (A 17) 

Since the integrand in (A 16) is bounded in the finite interval 0 < a < a,, the 
Riemann-Lebesgue theorem leads us to 

an 

lim Pg) = 0. 
x - t i  m 

As to Pg), it can be written as 
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From (A 13), it follows that for a-tco 

Then applying Fourier's single integral-theorem to the first integral of (A 19) 
and the Riemann-Lebesgue theorem to the second integral, we find that 

Pg)-+O as 2- lqnzl -+ +co. (A 21) 

To evaluate Pi1), consider the following formula (Morse & Feshbach 1953): 

where 

and Jo is the Bessel function of the first kind of order zero. The integral I can be 
rewritten as 

(A 22a)  

Then it follows from (A 15) and (A 23) that 

Therefore from (A 22) 

Consequently it turns out that 



Transonic shear .flow 781 

Appendix B. Derivation of (22) 
Putting 

1:) = - sgn z W [exp (ia (x - f )  - /3, (a) 1 z 1 )] FY, (5, y ; a) da, (B 1)  
S O r n  

I?) = -sgnzIorn W[exp (i.(x-f)-P,(a)lzI)]da, 

we can rewrite (20) as 

Since the terms for n > N' in (23) can be derived in the same way its shown in S, 
derivation of the terms for 0 Q n < N' - 1 only will be demonstrated here. 

For0 < n 6 "-1 

which, if (12) and (A 3) are considered, becomes 

On the other hand also for 0 < n < N' - 1 we have 

The first definite integral on the right-hand side of (B 5 )  is rewritten as 

a, 
= +I sin {a (x - [)}'*da, (B 6 )  [ a 0 a {a (x - f ) }  ~ 
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while the second infinite integral, if (12) is considered, becomes 

Using the above results and taking (11) and (21) into account, we can finally get 
the expression (22). 

Appendix C. A brief comment on the thickness effect 
The effect of thickness on the pressure field corresponds to that of the pressure 

dipoles which have axes parallel to  the basic flow. The disturbance pressure p, 
due to such dipoles distributed on the aerofoil surface ( z  = 0, - 4  < x < 4) will 
be represented by 

Then the z-component of the velocity induced on the plane x = 0 is written as 

Therefore the G, ( x ;  a)  are associated with the aerofoil thickness distribution by 
the following relation: 

or 

where g(x ,  y) denotes the contribution of thickness to the slope of the aerofoil 
surface. 

The results of the more detailed studies on the thickiiess effect are to be reported 
in the future. 
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